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Abstract. We observe that when the expansion vaziable in Painlevd analysis satisfies a 
system of Ria-ali equations, truncation at a level higher than constant level is allowed. 
This extends the range of exact solutions to nonlinear partial differential equations that we 
are able to obtain using truncated Painlevd expansions. 

1. Introduction 

Weiss, Tabor and Carnevale (WTC) 111 introduced a Painlev6 test for partial differen- 
tial equations (PDES) which allows the equation in question to be tackled directly. 
Given a PDE, say 

it consists of seeking a solution as an expansion 
U,= K[LIJ (1.1) 

U=,+-= U;,+' (1.2) 
,=D 

in the neighbourhood of a non-characteristic movable singularity manifold @ ( x ,  f )  = 0. 
Such an analysis requires first a choice of expansion family, or branch. This is a 

choice of leading order exponent a, leading order coefficient U;, and dominant terms 
R [ q .  For each family there is a set of indices, or resonances, %={rl, . . . , rn}, which 
give the values of j for which arbitrary data should be introduced in (1.2). We 
therefore give a choice of family as 

where #? is the weight of $[U when U is of weight a and a/& of weight 1. 
A simplification of the wrc test has been provided by Conte [2], who distinguishes 

between the two roles played by the function @, i.e. definition of the singularity 
manifold and expansion variable. He chooses a new expansion variable, 

a, U;, B [ q ,  A% R={r, ,  . . . , r,J (1.3) 

such that the coefficients Ui of the expansion 

t Present address: Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh, 
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are invariant under the action of the Mobius group on @. (Note that we have used ' 
above to denote WTC expansion coefficients). 

Defining S(x,  t )  and C ( x ,  t )  to be the homographic invariants 

the following identities are found to hold: 
,&=l+fS,$ (1.8) 

(1.9) 
s,+c,+2c,s+ cs,=o. (1.10) 

= - c + c,x- +(e, + CS)2 

The equation (1.10) is the cross-derivative (integrability) condition of the Riccati 
system (1.8) and (1.9). 

The solution (1.5) is a resummation of (1.2). Transformation formulae between 
the coefficients of these two expansions are given in [2]. 

In order to construct a solution with arbitraj  data corresponding to euery index 
we use a perturbative analysis [3]. This includes the w c  test as a special case. 
Necessary conditions that a PDE has the Painlev6 Property are that, for any family 
which represents either the general or a particular solution, a be integer (here 
assumed positive), the indices be distinct integers, and all compatibility conditions 
corresponding to each index be satisfied. 

One of the most important features of the WTC test is the truncation process, and in 
particular the singular manifold method of Weiss [4]. For example, the Korteweg-de 
Vries (KdV) equation, 

which has the single family 
a=2  u;=-2+: k[ul=K[ul p=5  9={-1,4,6} (1.12) 
admits the truncated expansion [4] 

U,= K [ q  = (U, +3u2), (1.11) 

provided that the singular manifold equation (SME) 

(1.14) 

holds (here d is an arbitrary constant). 
From this truncation it is possible to obtain the Lax pair for the KdV equation. 

Similar results hold for most other completely integrable PDES. 
The homographic invariant analysis provides the simplest formalism in which to 

seek solutions as truncated Painlev6 expansions; for the above example the truncation 
is rewritten 

L 
U,= - 2 x 4  - -(C+ 4s) (1.15) 6 

with SME 
c+ s+ a = 0. (1.16) 
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The solution U, of (1.11) which appears in the Lax pair is related to U, via the 

(1.17) 

where q is the eigenfunction of the Lax pair. It is this relationship that is useful in 
obtaining the Lax pair from truncated Painlev6 expansions; an explanation of this 
procedure can be found in 151. 

When the truncation does not lead to a Lax pair, whether or not the equation is 
completely integrable, it may still be used to find exad solutions (see for example 
[6-8]). It is this that we concentrate on here. We first derive a new truncation, and 
then show how this can be used to obtain solutions of PDES previously unobtainable 
by truncation. 

classical Darboux transformation 

U,- uL- 2az ln(v) = 0 

2. Higher-order truncations 

Most authors seem content to use the homographic invariant analysis to rewrite 
truncations of wrc expansions, as with (1.13) and (1.15) above. However this ignores 
a new freedom afforded by the change in expansion variable. It is this that we exploit 
here. 

Since we assume the dominant terms of (1.1) to be of weight j3, substitution of 
(1.5) gives 

m 

K [ U I - U ~ = X - ’ C  Qjx’ (2.1) 
j = O  

for some coefficients Q,. 
If we now consider the Riccati equations (1.8) and (1.9), we see that differentia- 

tion of x p  (p#O)  gives terms in xp-’  and f + l .  This means that our leading order 
analysis (for negative powers of x)  can be mirrored for positive powers. Thus just as 
when the lowest power of x in our expansion for U is -a the dominant terms R[U] 
balance and dominate at X-p, we also have that if the highest power of x in our 
expansion for U is a then the same dominant terms &[a will balance and dominate 
(in positive powers) at xB. 

It then follows that if we consider any pair of expansion families, characterized by 
(a, Uo, B )  and (c?, Uo, B), we may seek a solution of our PDE as 

a+e 

u,=x-aC q x ’  (2.2) 
,=o 

corresponding to which we have 

(2.3) 

Since we are assuming (for reasons of simplicity) that the dominant terms of each 
family depend only on spatial derivatives, it follows that the last coefficient in (2.2) is 
given by 

Ua+i=(-tS)aUo. (2.4) 
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From (2.4) we see that if the truncation (2.2) is genuinely to be at order x' then we 
must ask that S#O. 

We may seek such a solution whenever we use an expansion variable which 
satisfies a system of Riccati equations, and not just in the particular case where this 
Riccati system is given by (1.8) and (1.9). If we use the wrc q4 as an expansion variable 
then there will be no such balancing of terms at positive powers. 

Each of the examples we consider in this paper has the same leading order 
exponent for all of its families, the latter then being characterized by different choices 
of U,. So instead of (2.2) we take 

20 

(2.5) 

this being the form of higher order truncation presented in [9]. The first and last 
coefficients of (2.5) are determined as 

u,=ui)x-=+ ...+(-f S)"ri,x" (2.6) 

where U, and uo correspond to any two families of (1.1) (which may of course be the 
same). 

As a simple example, let us consider the KdV equation (1.11). The only solution of 
(1.11) of the form 

is 

U,= -2x-2- i(C+ 4s) - 4 s x '  (2.8) 

where both Sand Care required to be constant. In order to use the results given in the 
appendix, we write 

S = - f k 2  C=C (2.9) 

(see (Al) and (A2)). The solution (2.8) then becomes 

U,= - ik2{q2+ 4-3 + &2k2 - C) (2.10) 

where q is given by (A6). 
In the usual procedure of truncating at constant level, we are able to identify 

invariant and non-invariant b i t e  expansions. Of course we can still make such an 
identification; the difference here is that the wrc expansion is still an infinite series. 
This means that our truncation (2.2) corresponds to the summation of such an 
expansion. 
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Using the transformation between invariant and non-invariant analyses [2], we 
find that (2.8) corresponds to the w c  expansion 

#!/=@-'E U;@/ (2.11) 
j=0 

with the choice of arbitrary data 

U;= --frk4@;' U;= -$k4@:x@;6 (2.12) 

and subject to the constraints on @ 

(2.13) 

Similar remarks hold for all the examples dealt with in this paper. 

and C to be given by (2.9), then this gives 
If we consider the standard truncation (1.15) for the KdV equation, and choose S 

U,=-Zx-'-i(C+4S)= -:k2qZ+i(2kZ-~). (2.14) 

Using the identity, 

tanh2(r) + tanh-'(z) = 4 tanh' 22 + i - -2 (2.15) ( ? 
the solution (2.10) can be rewritten 

I n  
F = E + - i -  (2.16) k 2  

a solution of the same form as (2.14). So for this example our higher order truncation 
yields a different representation, as an infinite w c  expansion, of a solution that may 
be obtained from the standard truncation. 

For this example we have only one family and so must take Uo= Uo; there is then a 
natural correspondence between U0 and U,= U,. Indeed, we may use the identity 
(2.15) in reverse, and use the standard truncation (1.15) to obtain the higher-order 
truncation (2.8). Similar remarks hold for other examples where we choose Uo= Uo. 
However, when we have more than one family, it is possible to make a choice of U, 
that does not correspond to U. in this way. In the next section we show that making 
such a choice allows us to obtain solutions that cannot be found using truncation at 
constant level. 

UT= - 2k'tanh' (k(x-ct+ F ) ]  ++(8k2 - c) 

3. Examples 

3.2. Mod@ed KdV equntion. The modified KdV (mKdV) equation, 

v,= K [ I / ~ = ( v , - ~ v ~ ) ,  (3.1.1) 

has two families; 

a = l  vo=+l  ml =K[V p=4 %={-1,3,4}. (3.1.2) 
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Equation (3.1.1) is completely integrable and passes the Painled test. The standard 
truncation is [4] 

v,= 2x-L C+S=O.  (3.1.3) 

We now consider higher-order truncations. The choice (V,,, U,) = f (1,l) gives 

v,=k(x-'-fSX) (3.1.4) 
where S and C are required to be constant and satisfy C+4S=O. Choosing (V,, 
U,,) = f (1, -1) gives 

v,= f(x-'++Sx) (3.1.5) 
where Sand Care again required to be constant, this time subject to C-ZS=O. 

We assume S and C to be given by (AI) and (AZ), and use the identities 

tan(z) + tanh-'(z) = 2tanh 22 + i - (3.1.6) ( J 
tanh(z) - tanh-'(z) = - 2isech 22 + i - (3.1.7) ( 3 

Then (3.1.4) gives 

V,= ? (x-' -fSx) = *-(q +q-')  = k k tanh(k(x -et+ F)) 

with c-2kZ=0. This may also be obtained from (3.1.3). However (3.1.5) gives 
k l n  

F=E+-i- (3.1.9) k 2  VT= k(x-'+.fSx) = f - (q-q- ' )  = T ik sech(k(x- ct+ F) 2 

with c+ kZ=O, and so we recover the one-soliton solution of the mKdV equation. This 
cannot be obtained from the constant level truncation. 

k 1 .n F = E + - I -  (3.1.8) k 2  2 

The Miura transformation, 
U =  - v, - v, (3.1.10) 

maps the solutions (3.1.9) onto truncations representing the one-soliton solution of 
the KdV equation. This is not true of either of the solutions (3.1.8). 

In the rest of our examples we will concentrate on higher-order truncations having 
U,,# o,,. The solutions thus obtained for these equations are presented in table 1. 

3.2. Kolmogoroff-Petrousky-Piscounov equation 

The Kolmogoroff-Petrovsky-Piscounov (KPP) equation [lo], 

U,= K [  U ]  U ,  - 2 U'+ U (3.2.1) 
has two families; 

a = l  U,= f 1 R [ q  = U, - 2u3 p=3 %=(-1,4}. (3.2.2) 
The index at 4 produces the compatibility condition [ 6 , 7  

C( c, + cc, - fC3 + 2C)  = 0 (3.2.3) 
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and (3.2.1) does not have the Painlev6 property. Solutions of (3.2.1) obtained by 
truncation at constant level are given in [ 6 , 7 ] .  

Higher-order truncation with the choice (Uo, 4) =(-1, 1) gives a (stationary) 
sech solution; see table 1. For this solution the compatibility condition (3.2.3) is 
satisfied. 

3.3. Nepomnyachtchyi equation 

The Nepomnyachtchyi equation [l l] ,  

U,+ K[ U ]  = U, + a U, + b U, - 2bv” (U’), + y VU, + dU = 0 

has the families 

bvfO (3.3.1) 

a=  1 Un= k v I?[ (I] =bo1, - 2b~-’( U’), 

,s=5 a = {-1,3,4,4}. (3.3.2) 

The double index means that the equation does not have the Painled property. The 
compatibility conditions at 3 and 4 are [6] 

vc=o v(d- C,) = 0 (3.3.3) 

respectively. 
Seeking a higher-order truncation with (Uo, &) = (v, v) gives the tanh solution 

presented in [6 ] .  Choosing (Un, on) =(v, -v) gives a sech solution (see table l),  for 
which the compatibility conditions (3.3.3) are satisfied. 

Note that autonomous PDES can have pure sech solutions only when the equation is 
invariant under U+ - U. 

3.4. Bretherton equation 
The ‘Bretherton equation’ (considered by Kudryashov [SI), 

U” + K[ U ]  = uc, + U,, - 30u3 + U, + U = 0 
has the families; 

(3.4.1) 

a = 2  U022 ~[U]=U, , -30U’  8 = 6  

7 3  
a= -1,8, [ (3.4.2) 

The complex indices mean that (3.4.1) does not have the Painlev6 property. If we 
ignore these indices we still have a compatibility condition at 8; this is identically 
satisfied. 

For reasons of simplicity we assume S and C are constant. The choice (UoUo)= 
(2,2) is equivalent to the constant level truncation considered in [SI, and gives a 
solution quadratic in tanh. The choice (UoJ&,) = (2, -2) give?. a derivative sech 
solution (see table l),  which is a travelling wave of fixed speed. 

3.5. Chazy claw VII 

All of the examples that we have considered so far have had two families which 
correspond to the invariance of the dominant terms under U + -  U. We now consider 
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a simple example, an ordinary differential equation (ODE), where this is no longer the 
case. 

Chazy class VI1 [12] is the set of third-order ODES of the form U, polynomial in 
U,, U, and U, with coefficients analytic in x ,  whose dominant terms are given by 

K[U] = U,, - UU, - 2(1: - 2VU, = 0. (3.5.1) 

They have the following families; 

a=l cl,- 1 g[U]=K[U] 8=4 %={-1,2,4} (3.5.2) 

n = l  u ,=3  g[u = K[UI /3=4 %={-1,4,6} (3.5.3) 

The ODE (3.5.1) is, up to Mobius transformations, the only equation in this class with 
the Painleve property. We now use the truncation process to obtain particular 
solutions of (3.5.1). 

Truncation at constant level gives the solutions; 

u,=-x- I s,=o (3.5.4) 

uT=3x-l s=o. (3.5.5) 

The first of these is non-trivial, giving 

U,=-Ztanh - ( x + E )  . (: 1 (3.5.6) 

To obtain different solutions from higher-order truncations we must choose 
U,# U,]. The choices (U,,, U,) = (-1,3), (3, -1) give equivalent truncations; in table 1 
we take (U,, Ull)=(3, -1). 

In rewriting the truncation given in table 1 we have used the identities 

q= tanh(k(x-cf+ F)) - isech(k(x-cf + F ) )  (3.5.7) 

and 

q-'=tanh(k(x-ct+F))+isech(k(x-cff F)) (3.5.8) 

(see (3.1.8) and (3.1.9)). We remark that recently Conte and Musette [13] have 
proposed a method of obtaining solitary wave solutions of nonlinear PDES as polyno- 
mials in two functions U and r.  These functions have a dependence on a parameter p 
such that whenp=Ou=isech(k(x-ct+F))  and r=tanh(k(x-ct+F)). From (3.5.7) 
and (3.5.8) we see that the analysis presented in [13] is then related to that given here 
through 

q = r - o  4-1 = t + U. (3.5.9) 

The advantage of our approach is that it is placed within the context of Painlev6 
analysis, and the well understood derivation of exact solutions via truncation. 
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3.6. Potential seuenth-order KdV equation 
The potential seventh-order KdV equation (potential K d w ) ,  

W, = K [  = W, + 14Wx W, + 28W,W, + 21 W', + 70*W, t 70W,v, + 35 W:, 
(3.6.1) 

is completely integrable and passes the Painlevt test. This has the families; 

a=l w 0 = 2  fi[W]=K[W] p = s  

a = l  W0=6 R[wl=K[W] p = s  

a=l  WO= 12 aw = K[WI p=S 

%={-I, 1 ,2 ,4 ,5,7,10} (3.6.2) 

%={-3,-1,1,2,7,10,12} (3.6.3) 

%={-5,  -3, -1,1,10,12,14}. (3.6.4) 
We consider only the construction of higher-order truncations having WO# WO. 

Any such choice with either WO or WO being 12 requires S=O, and so is discounted. 
Thus only the choice (WO, Wo)=(6, 2) appears in table 1; choosing (WO, WO) =(2,6) 
gives an equivalent truncation. 

A solution of KdV7 is obtained from a solution of (3.6.1) by U =  W,. We note 
however that there is no truncation 

Vr= Vox-' + v, + v,x (3.6.5) 
of the seventh-order mKdV equation such that the solution U= (Wr)z of KdV7, W ,  as in 
table 1, can be obtained using the Miura map (3.1.10). 

4. Conclusions 

When the expansion variable in Painlevc? analysis satisfies a system of Riccati 
equations we are able to truncate at a level higher than constant level. This is a further 
advantage of the invariant analysis over the non-invariant analysis. Such truncations 
correspond to the summation of infinite wrc expansions for certain choices of 
arbitrary data. 

Appendix 

Here we show how a solution UT, obtained as a truncated Painlev6 expansion with 
coefficients given in terms of S and C, is determined by the equations 

c=c 
S = - & k 2  

c and k being arbitrary constants. 
When performing a Painlev6 analysis using the homographic invariant formalism 

no reference need be made to the definition of xgiven by (1.4). We only need grad&) 
given by (1.8) and (1.9) together with the cross-derivative condition (1.10). This 
remains true when determining U,; we do not need to solve (Al), (A2) for @. 
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When (AI) and (U) hold, the condition (1.10) is satisfied, and (1.8) and (1.9) tell 
us 

& = 1 - + k y  (A3) 

x= -C&. (-44) 
The general solution of (A3) and (A4) can be written 

2 
X ' P "  

where 

q ( x ,  t )  = tanh - ( x  -ct+E) G 1 
and E is an arbitrary constant. 

sions polynomial in tanh. 
The choice q-' in (A5) is made simply so that standard truncations give expres- 
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